Pipeline Adder Verilog Code
16 bit Pipeline Adder Verilog Code
A pipeline adder is a one of the fast adder using the principle of pipelining. This is a sequential adder, unlike combinational adders like Ripple Carry Adder, Carry Skip Adder, Carry Look-ahead Adder etc needs a storage element and clock.
The general block diagram of a Pipeline Adder is shown below.
To implement this in Verilog we used 4-bit Carry Select Adder Slice as adder slice in Verilog implementation of pipeline adder. The Verilog code of 16 bit pipeline adder is given below.
The Verilog Code of 16-bit Pipeline Adder:
`timescale 1ns/1ns module pipeline_adder_16bit(clk,reset,a, b, cin, sum, cout); input clk,reset; input [15:0] a,b; input cin; output [15:0] sum; output cout; wire [2:0] c; wire [15:0] s; reg [3:0] r1,r2,r3; reg[3:0] s1,s2,s3,s4; reg[3:0] t1,t2,t3,t4,t5; reg[3:0] u1,u2,u3,u4,u5,u6; reg[3:0]t1,t2,t3,t4,t5; reg a1,a2,a3; carry_select_adder_4bit_slice CLA1( .a(a[3:0]), .b(b[3:0]), .cin(cin), .sum(s[3:0]), .cout(c[0])); carry_select_adder_4bit_slice CLA2( .a(s1), .b(s2), .cin(a1), .sum(s[7:4]), .cout(c[1])); carry_select_adder_4bit_slice CLA3( .a(t3), .b(t4), .cin(a2), .sum(s[11:8]), .cout(c[2])); carry_select_adder_4bit_slice CLA4( .a(u5), .b(u6), .cin(a3), .sum(sum[15:12]), .cout(cout)); always @(posedge clk or posedge reset) begin if (reset) begin r1<=0;r2<=0;r3<=0; a1<=0;a2<=0;a3<=0; s1<=0;s2<=0;s3<=0;s4<=0; t1<=0;t2<=0;t3<=0;t4<=0;t5<=0; u1<=0;u2<=0;u3<=0;u4<=0;u5<=0;u6<=0; end else begin //1st level r1<=s[3:0]; r2<=r1; r3<=r1; //2nd Level s1<=a[7:4]; s2<=b[7:4]; a1<=c[0]; s3<=s[7:4]; s4<=s3; //3rd Level t1<=a[11:8]; t2<=b[11:8]; t3<=t1; t4<=t2; a2<=c[1]; t5<=s[11:8]; //4th Level u1<=a[15:12]; u2<=b[15:12]; u3<=u1; u4<=u2; u5<=u3; u6<=u4; a3<=c[2]; end end assign sum[3:0]=r3; assign sum[7:4]=s4; assign sum[11:8]=t5; endmodule ///////////////////////////////////// //4-bit Carry Select Adder Slice ///////////////////////////////////// module carry_select_adder_4bit_slice( a, b, cin, sum, cout); input [3:0] a,b; input cin; output [3:0] sum; output cout; wire [3:0] s0,s1; wire c0,c1; ripple_carry_4_bit rca1 ( .a(a[3:0]), .b(b[3:0]), .cin(1'b0), .sum(s0[3:0]), .cout(c0));//for input carry zero ripple_carry_4_bit rca2 ( .a(a[3:0]), .b(b[3:0]), .cin(1'b1), .sum(s1[3:0]), .cout(c1));//for input carry 1 mux2X1 #(4) ms0( .in0(s0[3:0]), .in1(s1[3:0]), .sel(cin), .out(sum[3:0])); mux2X1 #(1) mc0 ( .in0(c0), .in1(c1), .sel(cin), .out(cout)); endmodule ///////////////////// //2X1 Mux ///////////////////// module mux2X1( in0,in1,sel,out); parameter width=16; input [width-1:0] in0,in1; input sel; output [width-1:0] out; assign out=(sel)?in1:in0; endmodule ///////////////////////////////// //4-bit Ripple Carry Adder ///////////////////////////////// module ripple_carry_4_bit(a, b, cin, sum, cout); input [3:0] a,b; input cin; wire c1,c2,c3; output [3:0] sum; output cout; full_adder fa0(.a(a[0]), .b(b[0]),.cin(cin), .sum(sum[0]),.cout(c1)); full_adder fa1(.a(a[1]), .b(b[1]), .cin(c1), .sum(sum[1]),.cout(c2)); full_adder fa2(.a(a[2]), .b(b[2]), .cin(c2), .sum(sum[2]),.cout(c3)); full_adder fa3(.a(a[3]), .b(b[3]), .cin(c3), .sum(sum[3]),.cout(cout)); endmodule //////////////////////////////////// //1bit Full Adder //////////////////////////////////// module full_adder(a,b,cin,sum, cout); input a,b,cin; output sum, cout; wire x,y,z; half_adder h1(.a(a), .b(b), .sum(x), .cout(y)); half_adder h2(.a(x), .b(cin), .sum(sum), .cout(z)); or or_1(cout,z,y); endmodule ////////////////////////////////// // 1 bit Half Adder ////////////////////////////////// module half_adder( a,b, sum, cout ); input a,b; output sum, cout; xor xor_1 (sum,a,b); and and_1 (cout,a,b); endmodule
Pipelined Adder Simulation Result
Cadence RTL compiler is used to synthesize the Verilog code with Uofu standard library. We got the following schematic after mapping the hdl code to the standard library. This is basically the synthesized view.