Pipeline Adder Verilog Code
16 bit Pipeline Adder Verilog Code
A pipeline adder is a one of the fast adder using the principle of pipelining. This is a sequential adder, unlike combinational adders like Ripple Carry Adder, Carry Skip Adder, Carry Look-ahead Adder etc needs a storage element and clock.
The general block diagram of a Pipeline Adder is shown below.
To implement this in verilog we used 4-bit Carry Select Adder Slice as adder slice in verilog implementation of pipeline adder. The verilog code of 16 bit pipeline adder is given below.
The Verilog Code of 16-bit Pipeline Adder:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
`timescale 1ns/1ns module pipeline_adder_16bit(clk,reset,a, b, cin, sum, cout); input clk,reset; input [15:0] a,b; input cin; output [15:0] sum; output cout; wire [2:0] c; wire [15:0] s; reg [3:0] r1,r2,r3; reg[3:0] s1,s2,s3,s4; reg[3:0] t1,t2,t3,t4,t5; reg[3:0] u1,u2,u3,u4,u5,u6; reg[3:0]t1,t2,t3,t4,t5; reg a1,a2,a3; carry_select_adder_4bit_slice CLA1( .a(a[3:0]), .b(b[3:0]), .cin(cin), .sum(s[3:0]), .cout(c[0])); carry_select_adder_4bit_slice CLA2( .a(s1), .b(s2), .cin(a1), .sum(s[7:4]), .cout(c[1])); carry_select_adder_4bit_slice CLA3( .a(t3), .b(t4), .cin(a2), .sum(s[11:8]), .cout(c[2])); carry_select_adder_4bit_slice CLA4( .a(u5), .b(u6), .cin(a3), .sum(sum[15:12]), .cout(cout)); always @(posedge clk or posedge reset) begin if (reset) begin r1<=0;r2<=0;r3<=0; a1<=0;a2<=0;a3<=0; s1<=0;s2<=0;s3<=0;s4<=0; t1<=0;t2<=0;t3<=0;t4<=0;t5<=0; u1<=0;u2<=0;u3<=0;u4<=0;u5<=0;u6<=0; end else begin //1st level r1<=s[3:0]; r2<=r1; r3<=r1; //2nd Level s1<=a[7:4]; s2<=b[7:4]; a1<=c[0]; s3<=s[7:4]; s4<=s3; //3rd Level t1<=a[11:8]; t2<=b[11:8]; t3<=t1; t4<=t2; a2<=c[1]; t5<=s[11:8]; //4th Level u1<=a[15:12]; u2<=b[15:12]; u3<=u1; u4<=u2; u5<=u3; u6<=u4; a3<=c[2]; end end assign sum[3:0]=r3; assign sum[7:4]=s4; assign sum[11:8]=t5; endmodule ///////////////////////////////////// //4-bit Carry Select Adder Slice ///////////////////////////////////// module carry_select_adder_4bit_slice( a, b, cin, sum, cout); input [3:0] a,b; input cin; output [3:0] sum; output cout; wire [3:0] s0,s1; wire c0,c1; ripple_carry_4_bit rca1 ( .a(a[3:0]), .b(b[3:0]), .cin(1'b0), .sum(s0[3:0]), .cout(c0));//for input carry zero ripple_carry_4_bit rca2 ( .a(a[3:0]), .b(b[3:0]), .cin(1'b1), .sum(s1[3:0]), .cout(c1));//for input carry 1 mux2X1 #(4) ms0( .in0(s0[3:0]), .in1(s1[3:0]), .sel(cin), .out(sum[3:0])); mux2X1 #(1) mc0 ( .in0(c0), .in1(c1), .sel(cin), .out(cout)); endmodule ///////////////////// //2X1 Mux ///////////////////// module mux2X1( in0,in1,sel,out); parameter width=16; input [width-1:0] in0,in1; input sel; output [width-1:0] out; assign out=(sel)?in1:in0; endmodule ///////////////////////////////// //4-bit Ripple Carry Adder ///////////////////////////////// module ripple_carry_4_bit(a, b, cin, sum, cout); input [3:0] a,b; input cin; wire c1,c2,c3; output [3:0] sum; output cout; full_adder fa0(.a(a[0]), .b(b[0]),.cin(cin), .sum(sum[0]),.cout(c1)); full_adder fa1(.a(a[1]), .b(b[1]), .cin(c1), .sum(sum[1]),.cout(c2)); full_adder fa2(.a(a[2]), .b(b[2]), .cin(c2), .sum(sum[2]),.cout(c3)); full_adder fa3(.a(a[3]), .b(b[3]), .cin(c3), .sum(sum[3]),.cout(cout)); endmodule //////////////////////////////////// //1bit Full Adder //////////////////////////////////// module full_adder(a,b,cin,sum, cout); input a,b,cin; output sum, cout; wire x,y,z; half_adder h1(.a(a), .b(b), .sum(x), .cout(y)); half_adder h2(.a(x), .b(cin), .sum(sum), .cout(z)); or or_1(cout,z,y); endmodule ////////////////////////////////// // 1 bit Half Adder ////////////////////////////////// module half_adder( a,b, sum, cout ); input a,b; output sum, cout; xor xor_1 (sum,a,b); and and_1 (cout,a,b); endmodule |
Pipelined Adder Simulation Result
Cadence RTL compiler is used to synthesize the verilog code with Uofu standard library. We got the following schematic after mapping the hdl code to the standard library. This is basically the synthesized view.